skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zarnetske, ed., Phoebe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract AimCanopy structural complexity, which describes the degree of heterogeneity in vegetation density, is strongly tied to a number of ecosystem functions, but the community and structural characteristics that give rise to variation in complexity at site to subcontinental scales are poorly defined. We investigated how woody plant taxonomic and phylogenetic diversity, maximum canopy height, and leaf area index (LAI) relate to canopy rugosity, a measure of canopy structural complexity that is correlated with primary production, light capture, and resource‐use efficiency. LocationOur analysis used 122 plots distributed across 10 ecologically and climatically variable forests spanning a > 1,500 km latitudinal gradient within the National Ecological Observatory Network (NEON) of the USA. Time period2016–2018. Taxa studiedWoody plants. MethodsWe used univariate and multivariate modelling to examine relationships between canopy rugosity, and community and structural characteristics hypothesized to drive site and subcontinental variation in complexity. ResultsSpatial variation in canopy rugosity within sites and across the subcontinent was strongly and positively related to maximum canopy height (r2 = .87 subcontinent‐wide), with the addition of species richness in a multivariate model resolving another 2% of the variation across the subcontinent. Individually, woody plant species richness and phylogenetic diversity (r2 = .17 to .44, respectively) and LAI (r2 = .16) were weakly to moderately correlated with canopy rugosity at the subcontinental scale, and inconsistently explained spatial variation in canopy rugosity within sites. Main conclusionsWe conclude that maximum canopy height is a substantially stronger predictor of complexity than diversity or LAI within and across forests of eastern North America, suggesting that canopy volume places a primary constraint on the development of structural complexity. Management and land‐use practices that encourage and sustain tall temperate forest canopies may support greater complexity and associated increases in ecosystem functioning. 
    more » « less